Local derivations on the Lie algebra <i>W</i>(2, 2)

نویسندگان

چکیده

The present paper is devoted to studying local derivations on the Lie algebra $W(2,2)$ which has some outer derivations. Using linear methods in \cite{CZZ} and a key construction for we prove that every derivation $W(2, 2)$ derivation. As an application, determine all deformed $\mathfrak{bms}_3$ algebra.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the structure of lie derivations on c*-algebras

نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.

15 صفحه اول

Characterizations of 2-local derivations and local Lie derivations on some algebras

We prove that every 2-local derivation from the algebra Mn(A)(n > 2) into its bimodule Mn(M) is a derivation, where A is a unital Banach algebra and M is a unital A-bimodule such that each Jordan derivation from A into M is an inner derivation, and that every 2-local derivation on a C*-algebra with a faithful traceable representation is a derivation. We also characterize local and 2-local Lie d...

متن کامل

Lie $^*$-double derivations on Lie $C^*$-algebras

A unital $C^*$ -- algebra $mathcal A,$ endowed withthe Lie product $[x,y]=xy- yx$ on $mathcal A,$ is called a Lie$C^*$ -- algebra. Let $mathcal A$ be a Lie $C^*$ -- algebra and$g,h:mathcal A to mathcal A$ be $Bbb C$ -- linear mappings. A$Bbb C$ -- linear mapping $f:mathcal A to mathcal A$ is calleda Lie $(g,h)$ -- double derivation if$f([a,b])=[f(a),b]+[a,f(b)]+[g(a),h(b)]+[h(a),g(b)]$ for all ...

متن کامل

Characterizing Lie derivations on triangular algebras by local actions

Let U = Tri(A,M,B) be a triangular algebra, where A, B are unital algebras over a field F and M is a faithful (A,B)-bimodule. Assume that ξ ∈ F and L : U → U is a map. It is shown that, under some mild conditions, L is linear and satisfies L([X, Y ]) = [L(X), Y ] + [X,L(Y )] for any X,Y ∈ U with [X, Y ] = XY − Y X = 0 if and only if L(X) = φ(X) + ZX + f(X) for all A, where φ is a linear derivat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear & Multilinear Algebra

سال: 2022

ISSN: ['0308-1087', '1026-7573', '1563-5139']

DOI: https://doi.org/10.1080/03081087.2022.2160426